Graph-Based Locality-Sensitive Circuit Sketch Recognizer
نویسندگان
چکیده
منابع مشابه
An Image-Based Trainable Symbol Recognizer for Sketch-Based Interfaces
We describe a trainable, hand-drawn symbol recognizer based on a multi-layer recognition scheme. Symbols are internally represented as binary templates. An ensemble of four template classifiers ranks each definition according to similarity with an unknown symbol. Scores from the individual classifiers are then aggregated to determine the best definition for the unknown. Ordinarily, template-mat...
متن کاملLocality Sensitive Hashing Based Clustering
Definition In learning systems with kernels, the shape and size of a kernel plays a critical role for accuracy and generalization. Most kernels have a distance metric parameter, which determines the size and shape of the kernel in the sense of a Mahalanobis distance. Advanced kernel learning tune every kernel’s distance metric individually, instead of turning one global distance metric for all ...
متن کاملCircuit Sketch Recognition
Yuchi Liu, Yao Xiao Department of Electrical Engineering Stanford University Stanford, CA [email protected] , [email protected] Abstract—Recognizing circuit sketch is very useful for electrical engineers. In this project, we use topology based segmentation method to segment circuit sketch, and classify each component using the Fourier descriptors as feature vector for Support Vector Mach...
متن کاملFast kNN Graph Construction with Locality Sensitive Hashing
The k nearest neighbors (kNN) graph, perhaps the most popular graph in machine learning, plays an essential role for graphbased learning methods. Despite its many elegant properties, the brute force kNN graph construction method has computational complexity of O(n), which is prohibitive for large scale data sets. In this paper, based on the divide-and-conquer strategy, we propose an efficient a...
متن کاملLattice-based Locality Sensitive Hashing is Optimal
Locality sensitive hashing (LSH) was introduced by Indyk and Motwani (STOC ‘98) to give the first sublinear time algorithm for the c-approximate nearest neighbor (ANN) problem using only polynomial space. At a high level, an LSH family hashes “nearby” points to the same bucket and “far away” points to different buckets. The quality of measure of an LSH family is its LSH exponent, which helps de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3035545